高光谱成像仪的几种常见分光方式
发布时间:2024-05-11
浏览次数:392
高光谱成像仪也称成像光谱仪,其根据成像原理和工作特点的不同,其分光方式包括棱镜分光、光栅分光和傅里叶分光。本文对高光谱成像仪几种常见的分光方式及不同分光方式的特点做了介绍。
高光谱成像仪也称成像光谱仪,其根据成像原理和工作特点的不同,其分光方式包括棱镜分光、光栅分光和傅里叶分光。本文对高光谱成像仪几种常见的分光方式及不同分光方式的特点做了介绍。
棱镜色散分光:
棱镜分光主要利用棱镜的色散原理,通常用于棱镜材料透过率较高的谱段。由于在红外尤其是中长波红外谱段通过率较高且适合用来制作棱镜的材料并不多,所以棱镜分光主要用于可见光和近红外波段。
棱镜分光技术出现较早,技术较为成熟,原理图如下图所示示。入射狭缝位于准直系统的前焦面上,入射的辐射经准直光学系统准直后,经棱镜色散后由成像系统将光能按波长顺序成像在探测器的不同位置上。棱镜分光优点是光学效率,高,但由于棱镜对于光谱的色散是非线性的,而且会对光学系统引入额外的像差。
光栅衍射分光:
衍射光栅是一种光谱分光元件,其上有规则地配置着大量相等宽度、相等间隔的小狭缝。单个狭缝引起一个衍射条纹,并且从各个狭缝出射的相干波还会发生干涉,在光栅光谱仪的焦面上形成一种组合的干涉-衍射条纹,条纹极大位置与波长有关,因而光栅可以作光谱分光系统的衍射分光元件。衍射光栅按工作原理可以分为透射型和反射型,按照面型又可以分为平面、凹面和凸面光栅。
在准直光束中使用衍射光栅的成像光谱仪技术已经得到了广泛的应用,而衍射光栅同时也可以在发散光束中使用来达到分光目的。在这种方法中,从狭缝入射的光不需准直系统准直而直接入射到衍射光栅上,经光栅衍射后可得到目标狭缝的虚像,成像系统将狭缝按波长成像在面阵探测器的不同位置处。下图是凸面光栅分光系统。采用凸面光栅和离轴反射系统具有视场大、光学效率高、像质好的优势,与凹面光栅相比,它具有更好的成像平场度。
与准直光束色散系统相比,在发散光束中使用曲面光栅的分光系统不仅结构简单、体积小、重量轻、光学效率高、光谱范围受光学材料影响小,而且可以通过选择光栅常数和成像系统的变焦来满足空间和光谱分辨率的要求,并且可以克服准直光束应用方法中像面弯曲的问题。
傅里叶干涉分光:
傅里叶变换光谱仪利用光谱像元干涉图与光谱图之间的傅里叶变换关系,通过测量干涉图和对干涉图进行傅里叶变换来获得物体的光谱信息。光谱像元干涉图的获取方法与技术是傅里叶变换光谱学研究的核心问题之一,决定了傅里叶变换光谱仪的使用范围和能力。目前,遥感成像傅里叶变换光谱学中,用于获取地物光谱像元干涉图的方法主要有三种:迈克尔逊干涉法、三角共路干涉法和双折射干涉法。迈克尔逊干涉法是建立在具有一个不动镜和一个动镜的迈克尔逊干涉仪基础上,它可实现相当高精度的光谱测量,但对扰动比较敏感,对机械扫描精度要求也高,因此仪器结构庞大、成本高。
傅里叶干涉分光具有多通道,高光通量,高输出的优点,在同等情况下傅立叶变换光谱仪的光输出通量要比其他类型的光谱仪大得多。虽然傅立叶光谱仪的信噪比比常规光谱仪有一定提高,但也存在着许多缺点,如:a)内部扫描镜的运动需要较高的精度,机械加工和调装比较困难,对外界的震动敏感运动器件的存在会显著的减少仪器的寿命。b)即使是不存在内部扫描镜的静态傅立叶光谱仪,存在着对平台的姿态稳定性要求高。
相关产品
-
高光谱成像技术精准测试防火材料阻燃隔热性能
火灾频发,防火材料至关重要 近年来,火灾频发,给人们的生命财产安全带来了巨大威胁。从居民楼火灾到森林大火,每一次火灾事故都令人痛心疾首。据相关统计,仅在过去一..
-
高光谱成像技术对鲜莲直链淀粉含量检测实验室研究
高光谱成像技术是一种能获取丰富光谱和图像信息的无损检测技术,相较于化学检测方法,具有省时、省力、环境友好的优点口。本文将采用高光谱成像技术对鲜莲直链淀粉进行实验..
-
高光谱相机:开启纸张分选的精准时代
在环保日益受到重视的当下,废纸回收成为了资源循环利用的关键一环。每年,全球产生的废纸数量惊人,据相关数据显示,仅我国每年纸张消费就呈约 3500 万吨,若以废弃..
-
高光谱成像技术牛奶蛋白含量的实验室研究
牛奶作为人们日常生活中重要的营养来源,其蛋白质含量是衡量其营养价值的关键指标之一。传统的牛奶蛋白含量检测方法,如凯氏定氮法、高效液相色谱法等,虽然能够得到较为准..