高光谱成像仪的成像方式有哪些?
发布时间:2024-03-22
浏览次数:337
高光谱成像仪的成像方式有哪些?高光谱成像仪按照工作模式划分,可分为摆扫型成像光谱仪和推扫型成像光谱仪。本文对高光谱成像仪这两种成像方式的原理做了介绍。
高光谱成像仪的成像方式有哪些?高光谱成像仪按照工作模式划分,可分为摆扫型成像光谱仪和推扫型成像光谱仪。本文对高光谱成像仪这两种成像方式的原理做了介绍。
摆扫型成像光谱仪:
摆扫型成像光谱仪采用线阵探测器接收不同波长的电磁波,使用电机驱动旋转扫描镜完成地面目标线视场的获取,依靠飞机平台的前向位移实现线视场沿飞行方向的扩展。目标场景的复色光经过光栅和棱镜所组成的色散系统后经过汇聚透镜汇集在线阵探测器上,最终形成集有地物二维空间信息和一维光谱信息的立方体数据影像,如下图所示。
摆扫型光谱成像仪的总视场不受探测器尺寸的限制,由光谱相机的机械摆扫结构的行程决定,因此可以获得比较宽的空间探测范围。此外,摆扫型光谱相机的成像模式全靠同一个探测元实现,因此摆扫相机在数据反演的过程中仅仅需要针对一列像元进行光谱和辐射标定。也正是因为摆扫成像模式不存在光谱图像的空间不均匀性和光谱弯曲现象,因此摆扫成像设计也增加了光谱仪数据在实际应用当中的稳定性。其次,摆扫相机线阵探测器的工艺比较成熟,光谱覆盖范围可以从可见近红外一直延伸到热红外波长区间。然而,摆扫型成像方式为了兼顾仪器速高比等客观因素,不得不加快摆扫镜的转动速度,进而直接导致了地面探测单元的积分时间缩短,不利于仪器信噪比的提高。
推扫型光谱成像仪:
与摆扫型成像光谱仪不同,推扫型光谱成像仪采用了面阵探测器作为光电转换器件,对线视场范围内的目标进行垂直观测。利用棱镜和光栅对入瞳的复色光进行色散,并借助相机搭载平台的前向运动,实现线视场场景的扩展,最终达到构建对地光谱数字影像的目的,推扫型光谱仪的成像原理如下图所示。
由于推扫型光谱相机不需要通过摆扫结构实现线视场的成像,因此推扫成像方式正好弥补了摆扫型成像仪对地面分辨单元凝视时间短的缺点,使图像的积分时间增加了1000倍左右。这种技术的进步,极大的提升了光谱相机图像的信噪比和仪器灵敏度,同时也为更高的光谱和空间分辨率的实现创造了技术条件。此外,面阵探测器的出现,使光谱相机不再需要机械摆扫结构,因此相机的体积可以做的更小,有利于推广光谱相机在各个领域方面的应用。
然而,推扫型成像方式在保证大进光量的同时,也牺牲掉了仪器的空间覆盖范围。推扫型光谱仪器的空间视场角与摆扫型相机相比,仅能够占到摆扫成像方式的三分之一左右。另外,仪器面阵探测器的诸多像元之间也因为工艺水平的限制,不可能做到响应特性完全互相一致。这不仅给光谱数据的标定引入了巨大的计算量,同时也使得图像的非均匀性和光谱弯曲现象成为限制相机精度提升的又一大难题。
相关产品
-
干旱区基于高光谱的棉花遥感估产研究
棉花产量与冠层光谱植被指数相关关系,建立棉花高光谱估算模型,可以促进高光谱技术在棉花长势监测和估产中应用。本文简单总结了干旱区基于高光谱的棉花遥感估产研究。..
-
近红外光谱分析技术在精准农业中的应用
近红外光谱分析技术在精准农业中的应用非常广泛且深入,主要体现在以下几个方面:..
-
近红外高光谱相机的工作原理
近红外高光谱相机以其高分辨率、高光谱分辨率以及广泛的应用领域,在科研、工业检测、环境监测等多个领域发挥着重要作用。本文简单总结了近红外高光谱相机的工作原理。..
-
高光谱图像处理的主要方法有哪些?
对高光谱图像进行处理,可以获取物体在不同波段的反射光谱信息,提供更加详细和全面的图像数据。那么,什么是高光谱图像处理?高光谱图像处理的主要方法有哪些?下文对此做..