高光谱成像仪获取的光谱数据怎么提取特征波长?
发布时间:2024-03-15
浏览次数:1053
高光谱成像仪在数据采集的过程中,获取的光谱波段数据非常的庞大,包含的冗余和共线性信息会影响模型的预测精度。因此,需要对提取的光谱数据进行优化,提取特征波长。本文对高光谱成像仪光谱数据特征波长的提取方法做了介绍。
高光谱成像仪在数据采集的过程中,获取的光谱波段数据非常的庞大,包含的冗余和共线性信息会影响模型的预测精度。因此,需要对提取的光谱数据进行优化,提取特征波长。本文对高光谱成像仪光谱数据特征波长的提取方法做了介绍。
高光谱成像仪器和光谱仪一般能够获得数百个光谱波段,同时光谱分析需要收集大量样本,光谱矩阵往往非常庞大,光谱分析效率不高。同时光谱数据中包含的冗余和共线性信息会影响模型的预测精度。因此,需要对提取的光谱数据进行优化,去除冗余变量,寻找对模型建立起到关键作用的波长变量,减少波长个数,简化和优化模型。提取得到的特征波长还有助于分析光谱检测机理,开发简易、低成本的多光谱成像检测设备。
常用的特征波长选择方法有连续投影算法、无信息变量消除、遗传算法、逐步回归法、回归系数法、载荷系数法、竞争性自适应重加权算法、Random Frog等,其中竞争性自适应重加权算法和Random Frog是两种新型的波长选择方法,得到越来越广泛的应用,下文对这两种特征波长提取方法做了介绍。
1.竞争性自适应重加权算法
作为一种新的变量选择算法,竞争性自适应重加权算法(CARS)是由研究人员在2009年提出。该方法与偏最小二乘回归算法相结合,通过模仿达尔文进化论中“适者生存”的原则,每次采样过程中利用指数衰减函数(EDP)和自适应重加权采样技术(ARS)去除偏最小二乘回归模型中回归系数绝对值权重较小的变量,优选出回归系数绝对值权重较大的变量,N次采样后得到N个变量子集,依据交互验证选出交互验证均方根误差(RMSECV)最小的变量子集,该子集所包含的变量即为最优特征波长变量组合。
2.Random Frog算法
Random Frog是一种新的变量提取方法,是一种类似于可逆跳转马尔可夫链蒙特卡洛(RJMCMC)的算法,通过在模型空间中模拟一条服从稳态分布的马尔可夫链,来计算每个变量的被选概率,从而进行变量的选择。Random Frog与偏最小二乘回归算法相结合,建模方法采用偏最小二乘回归,模型中每个变量回归系数的绝对值大小作为每次迭代过程中该变量是否被剔除的依据。
相关产品
-
基于高光谱成像技术的印刷品颜色测量
现代印刷品色彩丰富、图案复杂、品种繁多, 在线质量检测成为必然要求。 印刷品油墨污点、图案缺陷很容易通过相机成像识别, 而色彩受到光照环境变化、材质差异而显色不..
-
滤光片高光谱成像仪的类型及原理
根据工作原理的不同,滤光片可分为声光可调谐滤波器、液晶可调谐滤波器、法布里-珀罗滤波器以及线性可变滤波片等四类。本文主要对声光可调谐滤波器(AOTF)和液晶可调..
-
色散型高光谱成像仪的原理及类型
目前获取光谱信息的方法主要有三种,分别是色散型、干涉型和滤波型测量技术。其中,色散型高光谱成像仪使用了棱镜、光栅或二者组合为分光元件。本文对色散型高光谱成像仪的..
-
光谱成像仪的成像方式凝视成像方式
光谱成像仪的成像方式主要有光机扫描式、扫帚式和凝视成像式三种。其中凝视型光谱成像仪属于电子式固体自扫描仪,它能同时对二维视场进行探测,其纵横视场采样元数与二维面..