高光谱成像仪的分类及原理介绍
发布时间:2024-02-23
浏览次数:1020
高光谱成像仪主要使用分光器件将入射光不同波长组分在空间中色散,由此在不同的空间位置获得不同波长信息。高光谱成像仪的光谱分辨率主要由入射狭缝,色散系统及探测器像元尺寸共同决定。根据色散原理的不同,高光谱成像仪可以分为不同的类型。本文对高光谱成像仪的分类及原理做了介绍。
高光谱成像仪主要使用分光器件将入射光不同波长组分在空间中色散,由此在不同的空间位置获得不同波长信息。高光谱成像仪的光谱分辨率主要由入射狭缝,色散系统及探测器像元尺寸共同决定。根据色散原理的不同,高光谱成像仪可以分为不同的类型。本文对高光谱成像仪的分类及原理做了介绍。
棱镜分光型光谱成像仪:
棱镜分光型使用分光棱镜进行色散,结构简单,其光线色散谱线唯一,相比于其他色散方式光能利用率高,但受到棱镜材料的限制,很难用于长波红外波段,对复合光色散非线性,导致单色光间的空间位置及信号不均匀。
光柵分光型光谱成像仪:
光柵分光型基于衍射原理工作,光栅由大量平行等宽且等间隔的多狭缝或反射镜刻槽构成。衍射光栅的色散原理为单狭缝产生的衍射效应与多个狭缝间的干涉效应相结合,形成色散谱线。然而,衍射光栅的原理决定其在零级主极大位置上集中大部分光能量,使色散光谱能量较低。随后出现的闪耀光栅通过使用锯齿状光栅刻槽剖面,将光能量分配至所需的级次上,从而解决了该问题。光栅的主要优势有:光谱分辨率高、光谱色散线性、谱线弯曲小、结构比较简单。不足之处是高阶光谱易对目标光谱形成干扰,同时还分散了入射光的能量。后期研发出的凹面光栅及凸面光栅,能够在作为色散器件的同时改变光路,从而简化光谱仪结构,提高了光学效率及系统可靠性。此类光栅常见于Offner成像系统中,但是也有加工困难、装调麻烦、价格昂贵、需要针对系统进行定制等方面的不足。
滤光片分光型光谱成像仪:
滤光片的基本原理是通过镀膜等手段选通特定波段光线,反射其他波段光线。基于滤光片的光谱仪主要有旋转滤光片型、楔形滤光片型、可调谐滤光片型等多种类型。
旋转滤光片型的主要原理是将数个透过波段不同的窄带滤光片安装于一旋转装置上,通过旋转装置旋转变换滤光片的位置,从而采集多个波段的光谱图像,构成高光谱图像数据。
楔形滤光片型结构可使其在不同的位置可透过的波长不同。将楔形滤光片用于面阵探测器,每次探测获取目标场景整行像元的光谱分布,再经过推扫过程就可以获得目标的高光谱图像信息。
可调谐滤光片是通过材料物理特性控制不同波段光线透过的光学元件,根据使用原理的不同,主要可以分为声光可调谐滤光片(AOTF)及液晶可调谐滤光片(LCTF)。声光可调谐滤光片工作原理基于晶体的声光效应。光线通过具有光学弹性的晶体时,使晶体发生高频振动就可以使特定波长的单色光发生衍射从而以一定角度透射出晶体。通过控制晶体振动频率,就能够控制透射单色光的波长,进行光谱扫描。AOTF使用时控制简单、扫描速度快、入射孔径角大,且无多级衍射光干扰并降低光能量,是实际应用的成像光谱仪中常用的器件。液晶可调谐滤光片分光原理基于液晶的场致双折射效应。由于双折射特性的存在,线偏振光通过液晶时,光线会分为两束,分别沿快轴和慢轴传播,从而产生光程差。当光线光程差非波长的整数倍时,经过下一个偏振片时就会产生衰减,只有光程差为整数倍波长的光线有较高透射率。因此,通过多个不同周期的LCTF级联就可以代替窄带滤光片的作用。LCTF具有不需光谱扫描、视场大、响应快、能耗小等优点,也获得了广泛的应用。
相关产品
-
高光谱成像分析在工业检测的应用
高光谱成像及分析已在国内外工业生产中广泛应用,其对当前无法实现的物质分选任务及瑕疵检测能力,是融合机器视觉的新型解决方案。..
-
高光谱成像仪的颜色检测法
颜色检测 高光谱成像仪测色方法能够测量更宽的光谱范围,能够记录更精细的光谱特征,相比传统的颜色分量方案有着更高的测色精度...
-
高光谱技术在农业、林业遥感领域的应用
高光谱遥感技术已成为农业、林业遥感领域的前沿技术之一; 树种识别 森林生物量估计 碳汇估算 养分元素监测 森林健康 病虫害监测。..
-
水质监测需求及高光谱技术应用分析
高光谱技术已经在水体水质监测方面得到了较多的应用,目前可以对多种水质指标(悬浮物浓度、叶绿素a浓度、黄色物质、透明度等)进行定量的估计和水质评估。..