高光谱数据常见的几种建模方法介绍
发布时间:2025-02-28
浏览次数:370
高光谱成像仪在获取高光谱数据后,需要对光谱数据进行提取与预处理,然后再建立预测模型。预测模型的建立,是保证样品评价结果准确性的前提。本文对高光谱数据常见的几种建模方法做了介绍。
高光谱成像仪在获取高光谱数据后,需要对光谱数据进行提取与预处理,然后再建立预测模型。预测模型的建立,是保证样品评价结果准确性的前提。本文对高光谱数据常见的几种建模方法做了介绍。
1.偏最小二乘回归(PLSR)
偏最小二乘回归(PLSR)是一种功能强大的统计方法,与主成分回归密切相关。PLSR在处理具有多重相关性的大量变量和有限的观测数据时特别有用,其中观测数量可能小于变量的维数。与传统的经典回归分析和其他方法相比,PLSR在构建更合理的回归模型方面具有独特的优势。
2.极限梯度提升(XGBoost)
极限梯度提升(XGBoost)算法对于梯度提升决策树(GBDT)算法,在性能方面取得了的重大进步。值得注意的是,与传统的GBDT算法相比,XGBoost在损失函数、模型复杂性控制的正则化、切点寻找和并行化设计等方面都有明显的改进。
3.随机森林(RF)
随机森林(RF)是一种监督学习算法,近年来得到了极大的关注。通过利用集合学习的力量,RF结合了多个弱分类器,通过投票机制在最终结果中实现了高准确性和泛化能力。
上一页 : 光谱成像仪光谱数据预处理的四种常见方法
下一页 : 高光谱成像仪CMOS探测器的优缺点
相关产品
-
高光谱成像仪信噪比的评估方法之图像评估法
光谱成像仪信噪比测试的核心问题是噪声测试,常见的噪声测试方法包括:暗电流法、实验室法和图像法。图像法则是以最终获得的图像作为测试数据,利用对图像数据的分析计算出..
-
高光谱数据的特点及高光谱数据的常见格式
高光谱成像仪作为一种光谱成像工具,它将传统二维成像技术和光谱技术有机结合在一起,既可以获取目标物的二维空间信息,又可以获得一维光谱信息,因此具有图谱合一的特点。..
-
推帚式高光谱成像仪的原理及发展趋势
高光谱成像技术的种类繁多,根据光谱信息的获取方式不同可分为三大类,分别是凝视式、摆扫式以及推扫式高光谱成像技术。本文对推帚式高光谱成像仪的原理及发展趋势做了简要..
-
成像光谱仪分类之推帚式成像光谱技术
成像光谱仪按照分光方式、扫描方式等的不同,可以分为不同的类型,其中推帚式成像光谱技术是按照扫描方式分类的一种。本文对成像光谱仪分类之推帚式成像光谱技术做了介绍。..