高光谱成像仪光谱数据的预处理方法
发布时间:2024-05-17
浏览次数:187
高光谱成像仪采集到的三维高光谱数据中的光谱信息除了含有有用的信息外,还含有其他大量的随机噪声和与样本性质无关的信息,这些因素都会对光谱信息产生一定的干扰,甚至会影响所建模型的性能和预测效果。因此,就需要对光谱信息进行预处理。本文对高光谱成像仪光谱数据的预处理方法作了介绍。
高光谱成像仪采集到的三维高光谱数据中的光谱信息除了含有有用的信息外,还含有其他大量的随机噪声和与样本性质无关的信息,这些因素都会对光谱信息产生一定的干扰,甚至会影响所建模型的性能和预测效果。因此,就需要对光谱信息进行预处理。本文对高光谱成像仪光谱数据的预处理方法作了介绍。
通过对光谱信息进行有效的预处理可以减弱甚至消除其他与样本性质无关的信息对光谱信息的影响,为后续建立预测精度高、稳健性好的分类判别模型奠定基础。目前,常用的预处理方法有变量标准化算法、多元散射校正算法、导数算法、基线校正、平滑算法和去趋势法等。
1.变量标准化算法(SNV)
变量标准化(Standard Normalized Variate,简称SNV)主要是用来消除由光散射所引起的光谱误差。SNV校正认为,在每一条光谱中各波长点的吸光度值应满足一定的分布规律。在这一假设的前提下,SNV是在原始光谱减去该条光谱曲线的平均光谱值,然后除以该条光谱曲线的标准偏差,其实质是使原始光谱数据标准正态化处理。
2.附加散射校正算法(MSC)
附加散射校正(Multiplicative Scatter Correction,简称MSC)是由Geladi等人提出,其主要目的是通过消除因颗粒大小及颗粒分布不均匀产生的散射影响,增强与成分含量相关的光谱吸收信息,并获得较“理想”的光谱。MSC方法认为,每一条光谱都应该与“理想”的光谱成线性关系,但真正“理想”的光谱是无法得到,所以一般用校正集的平均光谱来近似。即,每个样品的任意波长点下的反射吸光度值与其平均光谱的相应吸光度的光谱是近似线性关系,而且可以通过光谱集线性回归获得该直线的截距和斜率,并用来校正每条光谱。截距大小可以用来反应样品独特反射作用,而斜率大小则用来反映样品的均匀性。
3.平滑算法(Smoothing)
由光谱仪采集到的光谱信息中常常叠加着很多的随机误差,而平滑算法是常用来消除噪声的方法。其基本思路是通过多次选取平滑点前后的特定点进行平均或拟合来降低噪声,从而提高信噪比。常用的平滑方法有:Savitzky-Golay卷积平滑法、移动平均平滑法和指数平均平滑。
4.去趋势法(De-trending)
去趋势算法(De-Trending)一般可以用于消除经SNV处理后的光谱的基线漂移,也可以单独使用。该算法比较直接,先按多项式将光谱xi的吸光度和波长拟合出一条趋势线di,再从原始光谱中减掉趋势线(xi-di)。经过去趋势法处理后,其波峰和波谷的特征更加明显。
5.基线校正(Baseline)
在光谱分析中,由于样品自身的不均性、仪器背景或其他因素等影响,导致所测样品的谱图经常会出现倾斜或漂移现象,若不加处理,会影响校正模型的性能和对未知样品预测结果的准确性。
相关产品
-
高光谱成像技术在农业中的几点应用介绍
高光谱成像技术是一种用于获取物质反射、透射和辐射率的光谱信息,进而进行数据分析、处理和成像的先进技术。它不仅可以提高农业生产的效率和品质,也有利于减少资源浪费和..
-
光谱相机有哪些类型?光谱相机的分类
光谱相机是一种能够获取物体光谱信息的图像设备,其应用广泛,包括食品安全检测、药物研发、化学分析等领域。根据其不同的技术原理和应用场景,可以将光谱相机技术分为不..
-
多光谱相机的硬件组成部分是怎样的?
多光谱相机是一种能够同时获取多个波段(光谱)信息的相机,用于捕捉物体在不同波段上的反射或辐射特性。多光谱成像在农业、环境监测、地质勘探、医学等领域有广泛的应用..
-
高光谱相机数据格式的类型及包含的内容
高光谱相机是一种可以捕捉到物体在各个波段反射或发射的光线信息的设备,它通过将不同波长的光分成不同的颜色(光谱),然后对每个颜色进行单独的成像,从而获取物体的光谱..