高光谱成像仪高光谱图像降维方法介绍
发布时间:2023-12-07
浏览次数:602
高光谱成像仪在对样本进行扫描时,可以获得样本的高光谱图像数据,但由于高光谱数据量过大,会降低后期的数据处理速度,并且波段较多,光谱信息之间相关性很强,使得三维数据块之间存在大量冗余信息,可能影响建模结果,因此就需要进行降维处理。本文对高光谱成像仪高光谱图像降维方法做了介绍。
高光谱成像仪在对样本进行扫描时,可以获得样本的高光谱图像数据,但由于高光谱数据量过大,会降低后期的数据处理速度,并且波段较多,光谱信息之间相关性很强,使得三维数据块之间存在大量冗余信息,可能影响建模结果,因此就需要进行降维处理。本文对高光谱成像仪高光谱图像降维方法做了介绍。
高光谱数据是一个三维数据块,不仅可以提取每个像元的光谱信息,而且每个波长都对应一幅灰度图像。但是,对于分辨率较高的高光谱数据,每个数据块就包含上百幅图像信息,数据量过大,会降低后期的数据处理速度,并且波段较多,光谱信息之间相关性很强,使得三维数据块之间存在大量冗余信息,可能影响建模结果。因此,在数据处理过程中,高光谱数据的降维是减小噪声,提高模型识别速率和识别准确率的有效手段。目前的主要的降维方法有以下两种:
1.主成分分析(PCA)
主成分分析(PCA)是被较多应用的一种数据降维方法。PCA变换是将有相关性的原始变量沿协方差最大的方向投影,使经过坐标变换的高维空间数据映射到低维空间,得到线性不相关的新变量,即主成分。主成分按照方差从大到小的顺序依次称为第一主成分(PC1)、第二主成分(PC2),以此类推。原始高光谱数据经过PCA变换,可以看作各个主成分图像的线性组合,主成分图像所占原始图像信息的比重由方差贡献率决定。一般,当主成分的累计贡献率达到一定比例,如85%以上,即可解释大部分高光谱数据信息。因此,经过PCA变换的高光谱数据仅需少量主成分就可以极大程度上表征原始信息,大大减少了数据处理时间,并消除原始数据之间冗余的信息。
2.最小噪声分离变换(MNF)
对于高光谱数据降维,最小噪声分离变换(MNF变换)的主要目的在于分离高光谱数据的信号和噪声,提高信噪比。该算法可以看作是两次主成分变换的叠加。首先,基于图像噪声的协方差矩阵进行正向变换,然后,对多维图像去相关、重定标。变换之后的数据关联到两个部分:一个部分是较大特征值,及其特征图像;另一个部分则是较小特征值,及其噪声图像。特征值的大小决定特征图像的信噪比高低,用来确定有效的特征图像。最后,正向变换后确定的图像子集被作标准主成分变换,恢复为对应的原始图像。MNF将噪声比例大的图像排除,使有效的高光谱数据量大幅度上涨。
相关产品
-
高光谱成像仪光学参数F数解析
高光谱成像仪的F数(F-number),也称为光圈数、焦比,是一个重要的光学参数。本文对高光谱成像仪F数做了详细的介绍,对高光谱成像仪参数感兴趣的朋友可以了解..
-
高光谱成像仪空间像素怎么理解?
空间像素是高光谱成像仪重要的技术参数,它是指在成像过程中用于描述空间位置信息的基本单元,它在获取高光谱数据时起着关键作用。本文对高光谱成像仪空间像素做了介绍,..
-
高光谱成像仪几个常见技术参数介绍
高光谱成像仪作为精密的光电仪器,其会涉及到很多的参数设计,其中比较常见的参数有光谱范围、光谱波段数、光谱分辨率、狭缝宽度和透射效率,对于这些参数含义,大家并不..
-
高光谱成像仪分光方式透射光栅工作原理及优缺点
透射光栅是高光谱成像仪中常用的分光元件,对于该元件的工作原理及优缺点,许多的用户不是很清楚。本文对高光谱成像仪分光方式透射光栅工作原理及优缺点做了介绍,感兴趣..