高光谱成像仪高光谱图像的去噪方法有哪些?
发布时间:2023-11-24
浏览次数:405
高光谱成像仪采集的三维数据块能够提供被检样品内外部丰富的成分含量信息,但由于高光谱数据具有波段多、分辨率高、数据维度高、冗余性强等特点,因此必须采取合适的的数学算法对数据进行处理和分析。那么,高光谱成像仪高光谱图像的去噪方法有哪些?下文为大家作了介绍。
高光谱成像仪采集的三维数据块能够提供被检样品内外部丰富的成分含量信息,但由于高光谱数据具有波段多、分辨率高、数据维度高、冗余性强等特点,因此必须采取合适的的数学算法对数据进行处理和分析。那么,高光谱成像仪高光谱图像的去噪方法有哪些?下文为大家作了介绍。
目前国内外主要采用以下几种方法对高光谱图像进行去噪:
1.基于空间域滤波
由于高光谱图像是由二维图像叠加得到的立方体,在空间域上相当于将多个二维图像沿着光谱维叠加,因此在基于空间域的去噪方法中最为直接的处理方式即为分别对每个波段的图像进行去噪。但此方法没有充分利用高光谱图像的谱间相关性,因此去噪效果有限。较为常用的空间域去噪算法主要有全变分法、小波域去噪法、非局部均值法以及BM3D等。
2.基于光谱域滤波
高光谱图像中可提取出成百上千个波段信息,但基于光谱域进行图像去噪时,仅仅考虑了光谱维度,忽略了高光谱图像的空间维度的信息,因此去噪后的高光谱图像会存在一定程度的失真。最常用的光谱域去噪方法主要有最大噪声比率法和SG滤波方法。
3.基于空-谱联合去噪
该去噪方法基于高光谱图像的特性,分为变换域去噪和像素空间去噪。变换域去噪主要为小波域去噪,通过小波对图像进行变换。而像素域去噪不同,是直接对每一个二维图像的像素进行去噪。除此之外,还有直接对三维数据块去噪的方法,如BM4D"等。由于高光谱图像的低秩特性,有学者提出了基于低秩优化的去噪模型,如LRMR去噪方法等。总体而言,该去噪方法相较于前两种方法去噪性能更好,但仍没有充分利用空间信息,因此还可以探寻方法进一步提高该方法的性能。
相关产品
-
高光谱成像技术在农业中的几点应用介绍
高光谱成像技术是一种用于获取物质反射、透射和辐射率的光谱信息,进而进行数据分析、处理和成像的先进技术。它不仅可以提高农业生产的效率和品质,也有利于减少资源浪费和..
-
光谱相机有哪些类型?光谱相机的分类
光谱相机是一种能够获取物体光谱信息的图像设备,其应用广泛,包括食品安全检测、药物研发、化学分析等领域。根据其不同的技术原理和应用场景,可以将光谱相机技术分为不..
-
多光谱相机的硬件组成部分是怎样的?
多光谱相机是一种能够同时获取多个波段(光谱)信息的相机,用于捕捉物体在不同波段上的反射或辐射特性。多光谱成像在农业、环境监测、地质勘探、医学等领域有广泛的应用..
-
高光谱相机数据格式的类型及包含的内容
高光谱相机是一种可以捕捉到物体在各个波段反射或发射的光线信息的设备,它通过将不同波长的光分成不同的颜色(光谱),然后对每个颜色进行单独的成像,从而获取物体的光谱..