光谱成像仪的成像原理是怎么样的?光谱成像仪有哪些扫描方式?
发布时间:2023-06-02
浏览次数:980
光谱成像仪将计算机成像技术和光谱技术进行有机结合而发展起来的一种新型无损检测技术,被广泛的应用于业分选、精准农业、色差检测、食品检测、医学制药、文物保护、刑侦检测、环境监测等领域。本文对光谱成像仪的原理及扫描方式做了介绍,感兴趣的朋友可以了解一下!
光谱成像仪将计算机成像技术和光谱技术进行有机结合而发展起来的一种新型无损检测技术,被广泛的应用于业分选、精准农业、色差检测、食品检测、医学制药、文物保护、刑侦检测、环境监测等领域。本文对光谱成像仪的原理及扫描方式做了介绍,感兴趣的朋友可以了解一下!
光谱成像仪成像的原理:
光谱根据分辨率的高低可以将其分成多光谱、高光谱、超光谱三种类型,这三种类型对应的光谱分辨率分别为10-1λ以内、10-2λ以内、10-3λ以内,而高光谱图像就是由一系列连续的光波波长组成的光学图像。因此高光谱成像就是指在特定的波长范围内获得由一系列连续的窄波段图像组成的包含三维图像数据块的过程。一个典型的高光谱数据块示意图如下图所示,进行高光谱成像时,成像仪通过接收被测物体表面反射和透射光以及在X轴上进行分光,在Y轴上进行成像,从而获得包含一维光谱和二维图像的高光谱三维数据块。通常高光谱的光谱范围主要包括可见光谱区域(400~760nm)和近红外光谱区域(760~2560nm),目前其光谱分辨率可以达到2~3nm。在利用高光谱成像技术在获得样品图像的同时,还能够为图像上每个像素点提供上千个波长点的光谱信息,因此包含了样品内部丰富的成分含量信息,可以达到实现样品的成分、含量、空间分布的无损测量的目的。
光谱成像仪的扫描方式:
根据扫描方式分类,光谱成像仪的工作方式可以分为挥扫方式、推扫方式、凝视方式三种。
(1)挥扫方式(摆扫)的成像光谱仪
使用线阵探测器来接收目标信息,其原理如上图所示,通过扫描镜的左右摆扫可以完成一维的扫描,当光谱仪随机载平台移动就可以完成二维的空间扫描,得到带状二维空间信息,同时在挥扫中光谱仪可以得到对应线阵探测器的瞬时视场角内的光谱信息,最后经数据处理即可得到目标的三维数据立方体。挥扫方式的优点是其瞬时视场较小,因此系统像质较高,通过挥扫能够得到较大的总视场。但是仪器中扫描的机械结构复杂,造成仪器体积庞大,又由于光机扫描使每个像元的凝视时间很短,因此很难提高光谱仪的空间和光谱分辨率。
(2)推扫方式(推帚)的成像光谱仪
采用面阵探测器来接收目标信息,其原理如上图所示面阵探测器本身完成了垂直飞行方向的扫描,当光谱仪随机载平台移动时会同时得到目标的空间维信息和光谱信息。与前者相比,推扫方式没有用于扫描的机械结构,体积小、实用性和可靠性较强,适用于棱镜或光栅分光方式的光谱仪。但光学设计上的困难使得推帚式光谱仪的总视场一般不大,若要增大视场一般需要在光学系统中添加指向镜或补偿镜,但是这样又会使系统的复杂度增加。
(3)采用凝视方式的光谱仪
同样采用面阵探测器接收目标信息,原理如上图所示,光谱仪采用二维视场成像方式,可以同时进行二维扫描,完成对二维目标空间的成像,通过搭载平台完成沿轨道方向的画幅式成像。其光谱信息和空间信息不能同时得到,需要通过系统内的滤光片轮、可调谐滤光片或渐变滤光片等进行分光获取光谱维信息,经过数据处理后才能得到三维数据立方体。凝视方式摆脱了机械扫描结构,使得系统体积大幅减小,但后期的数据处理较为困难。
相关产品
-
高光谱成像仪光学参数F数解析
高光谱成像仪的F数(F-number),也称为光圈数、焦比,是一个重要的光学参数。本文对高光谱成像仪F数做了详细的介绍,对高光谱成像仪参数感兴趣的朋友可以了解..
-
高光谱成像仪空间像素怎么理解?
空间像素是高光谱成像仪重要的技术参数,它是指在成像过程中用于描述空间位置信息的基本单元,它在获取高光谱数据时起着关键作用。本文对高光谱成像仪空间像素做了介绍,..
-
高光谱成像仪几个常见技术参数介绍
高光谱成像仪作为精密的光电仪器,其会涉及到很多的参数设计,其中比较常见的参数有光谱范围、光谱波段数、光谱分辨率、狭缝宽度和透射效率,对于这些参数含义,大家并不..
-
高光谱成像仪分光方式透射光栅工作原理及优缺点
透射光栅是高光谱成像仪中常用的分光元件,对于该元件的工作原理及优缺点,许多的用户不是很清楚。本文对高光谱成像仪分光方式透射光栅工作原理及优缺点做了介绍,感兴趣..