显微高光谱成像系统(二)——成像原理
发布时间:2023-05-24
浏览次数:1189
显微高光谱成像系统具有直视性、光谱分辨率高、结构紧凑、成本低等优点,成功的将成像光谱技术应用到显微领域,可广泛应用于临床医学、生物学、材料学、微电子学等学科领域。那么,显微高光谱成像系统的成像原理是什么呢?本文进行了简单总结。
显微高光谱成像系统具有直视性、光谱分辨率高、结构紧凑、成本低等优点,成功的将成像光谱技术应用到显微领域,可广泛应用于临床医学、生物学、材料学、微电子学等学科领域。那么,显微高光谱成像系统的成像原理是什么呢?本文进行了简单总结。
显微高光谱成像实验系统基于推帚式成像光谱仪的原理进行设计,光路原理图如图所示。
处于显微镜载物台上的样品被柯勒照明系统照明,瞬时视场内的样品条带通过显微镜物镜和0.6倍CMount接口镜头成像于分光计的狭缝处,再经过光谱分光组件后,在垂直样品条带方向按光谱色散,最后成像于CCD像面。
CCD光敏面平行于狭缝的一维称为空间维,垂直于狭缝的一维称为光谱维,空间维每一行光敏元上得到的是样品条带一个光谱波段的像,这样面阵CCD相机每帧图像便对应于一个样品条带的多光谱图像。通过载物台自动装置对样品进行推扫,就得到整个样品的二维图像及光谱数据,即图像立方体。
整个系统由显微镜、分光计、面阵CCD相机、载物台自动装置以及数据采集与控制模块等几部分组成。系统的光谱范围从400nm到800nm,120个波段,光谱分辨率优于5nm,空间分辨率大约1μm。不仅能够提供微小物体在可见光范围的单波段显微图像,而且能够获得图像中任一像素的光谱曲线,实现了光谱技术和显微成像技术的结合,在微观领域有着广泛的应用。
上一页 : 显微高光谱成像系统(一)——发展背景
下一页 : 无人机高光谱成像系统实时监测农业情况
相关产品
-
高光谱成像仪光学参数F数解析
高光谱成像仪的F数(F-number),也称为光圈数、焦比,是一个重要的光学参数。本文对高光谱成像仪F数做了详细的介绍,对高光谱成像仪参数感兴趣的朋友可以了解..
-
高光谱成像仪空间像素怎么理解?
空间像素是高光谱成像仪重要的技术参数,它是指在成像过程中用于描述空间位置信息的基本单元,它在获取高光谱数据时起着关键作用。本文对高光谱成像仪空间像素做了介绍,..
-
高光谱成像仪几个常见技术参数介绍
高光谱成像仪作为精密的光电仪器,其会涉及到很多的参数设计,其中比较常见的参数有光谱范围、光谱波段数、光谱分辨率、狭缝宽度和透射效率,对于这些参数含义,大家并不..
-
高光谱成像仪分光方式透射光栅工作原理及优缺点
透射光栅是高光谱成像仪中常用的分光元件,对于该元件的工作原理及优缺点,许多的用户不是很清楚。本文对高光谱成像仪分光方式透射光栅工作原理及优缺点做了介绍,感兴趣..