高光谱成像仪光谱数据的建模方法
发布时间:2025-02-14
浏览次数:440
在对光谱数据进行特征波长选取后,需通过构建定量预测模型验证波长选取方法的有效性。建模整体过程为:通过建模方法分析光谱数据与样本待测组分含量间的关系,实现对待测组分含量的预测。下文主要介绍常用的偏最小二乘法(PLS)和最小二乘支持向量机(LS-SVM)建模方法。
在对光谱数据进行特征波长选取后,需通过构建定量预测模型验证波长选取方法的有效性。建模整体过程为:通过建模方法分析光谱数据与样本待测组分含量间的关系,实现对待测组分含量的预测。下文主要介绍常用的偏最小二乘法(PLS)和最小二乘支持向量机(LS-SVM)建模方法。
1.偏最小二乘法(PLS)
PLS是一种应用广泛、针对多变量的线性回归建模方法。传统线性回归方法往往限制于样本量远少于光谱变量维度、变量存在高度相关等因素,难以获取良好的分析结果。PLS方法可以在样本量少的情况下,通过主成分分析逐步从光谱变量矩阵中筛选出对待测组分变量有最佳解释能力的综合变量,基于综合变量构建光谱变量与待测组成变量的回归模型。PLS充分考虑了光谱变量与待测组分间的相关性,以有限高质量的变量作为模型的输入变量,降低模型复杂度,提高计算效率和预测精度。
2.最小二乘支持向量机(LS-SVM)
LS-SVM是非线性回归建模方法,该方法在对数据进行拟合时,将输入光谱数据从低维度空间映射到高维度空间,使数据的性质从线性转化为非线性,以最小二乘线性系统为损失函数,误差二范数为经验风险,并采用等式约束条件,求解线性矩阵方程组。相较于传统SVM方法,LS-SVM的复杂度得以简化,计算速率得到提高。
上一页 : 高光谱成像仪光谱数据特征波长的提取方法
下一页 : 常见的高光谱数据预处理方法有哪些?
相关产品
-
高光谱成像仪信噪比的评估方法之图像评估法
光谱成像仪信噪比测试的核心问题是噪声测试,常见的噪声测试方法包括:暗电流法、实验室法和图像法。图像法则是以最终获得的图像作为测试数据,利用对图像数据的分析计算出..
-
高光谱数据的特点及高光谱数据的常见格式
高光谱成像仪作为一种光谱成像工具,它将传统二维成像技术和光谱技术有机结合在一起,既可以获取目标物的二维空间信息,又可以获得一维光谱信息,因此具有图谱合一的特点。..
-
推帚式高光谱成像仪的原理及发展趋势
高光谱成像技术的种类繁多,根据光谱信息的获取方式不同可分为三大类,分别是凝视式、摆扫式以及推扫式高光谱成像技术。本文对推帚式高光谱成像仪的原理及发展趋势做了简要..
-
成像光谱仪分类之推帚式成像光谱技术
成像光谱仪按照分光方式、扫描方式等的不同,可以分为不同的类型,其中推帚式成像光谱技术是按照扫描方式分类的一种。本文对成像光谱仪分类之推帚式成像光谱技术做了介绍。..