基于高光谱成像的苹果损伤检测方法
发布时间:2024-06-21
浏览次数:578
近年来,高品质苹果在市场上表现出一定竞争力。一般来说,外观可以直观反映苹果质量,损伤作为影响水果品质的主要指标之一,对保证苹果品质和利润具有重要意义。
近年来,高品质苹果在市场上表现出一定竞争力。一般来说,外观可以直观反映苹果质量,损伤作为影响水果品质的主要指标之一,对保证苹果品质和利润具有重要意义。
伴随科技的发展与进步,无损检测技术开始应用于水果品质检测中。使用较多的检测技术有高光谱成像(HSI)、近红外光谱、红外热成像、核磁共振等[5-8]。光谱分析和机器学习方法对于处理疾病检测中的HSI数据至关重要,可提取和利用高维数据中包含的有效信息。
检测方法
1试验材料
2022年11月上旬,在北京平谷苹果产区,选择大面积种植的具有代表性的苹果样本,共收集163个,涵盖3个品种(红富士、王林、国光)。
为避免苹果表面的灰尘杂质等对数据采集造成影响,采集高光谱图像前将苹果清洗,并用 75%酒精对其表面进行消毒去污,置于常温室内备用。
2高光谱图像采集
苹果放置室内12h后,采集样本的高光谱图像。高光谱图像采集系统由1个暗箱、1个升降平台、2个75W卤钨灯、2台风扇、1个高光谱成像仪和1台计算机组成,高光谱成像系统示意图如图1所示。高光谱相机可以检测176个波长,在395.9~998.1 nm范围内均匀分布,分辨率为4nm。苹果样本和相机镜头之间的距离为500mm,镜头直径为25 mm。图像的空间分辨率为1 000 x 1000,所有图像均通过水果的辐射率与白色参考面板的辐射率校准获取绝对反射率。
结论
本研究利用高光谱图像技术检测苹果损伤进行研究,对所获得的高光谱图像数据进行比值光谱分析,优选特征敏感波长(528 nm 和 676nm),利用该两波段组合光谱特征指数增强下的图像,通过ISODATA无监督分类图像处理技术可以有效检测苹果表面的损伤区域。
本研究结果表明,基于528、676 nm的光谱反射率建立的NDSI对损伤区域及正常区域特征具有较强的区分能力。ISODATA 方法的苹果损伤识别正确率为92.50%,该方法为现实复杂情景下检测苹果表面损伤提供了有效的解决方案,在水果生产和检测的高通量表型分析中具有巨大潜力。
相关产品
-
基于高光谱成像技术的印刷品颜色测量
现代印刷品色彩丰富、图案复杂、品种繁多, 在线质量检测成为必然要求。 印刷品油墨污点、图案缺陷很容易通过相机成像识别, 而色彩受到光照环境变化、材质差异而显色不..
-
滤光片高光谱成像仪的类型及原理
根据工作原理的不同,滤光片可分为声光可调谐滤波器、液晶可调谐滤波器、法布里-珀罗滤波器以及线性可变滤波片等四类。本文主要对声光可调谐滤波器(AOTF)和液晶可调..
-
色散型高光谱成像仪的原理及类型
目前获取光谱信息的方法主要有三种,分别是色散型、干涉型和滤波型测量技术。其中,色散型高光谱成像仪使用了棱镜、光栅或二者组合为分光元件。本文对色散型高光谱成像仪的..
-
光谱成像仪的成像方式凝视成像方式
光谱成像仪的成像方式主要有光机扫描式、扫帚式和凝视成像式三种。其中凝视型光谱成像仪属于电子式固体自扫描仪,它能同时对二维视场进行探测,其纵横视场采样元数与二维面..