可见、近红外技术对黑枸杞品质研究
发布时间:2023-03-29
浏览次数:491
可见、近红外技术对黑枸杞品质研究
1. 实验目标
高光谱成像仪采集的实验目标为黑枸杞,分为红果、烂果、霉变果,其中红果是指没有成熟就摘下来的果实;烂果是没有发生霉变,只是果实没压碎了,可与霉变果作对比参照;霉变果是指发生霉变的果实,如下图所示。
图2 需要高光谱设备采集的实验目标
2. 实验结果
2.1 可见、近红外技术分析黑枸杞品种
图3为黑枸杞烂果、霉变果和红果在400-1000nm波长范围内的光谱反射率曲线,从其反射率曲线来看,在可见光区域,烂果、霉变果和红果的光谱反射率曲线变化趋势相似,其相对值也很接近,但在近红外区域,特别是730nm以后,红果的光谱反射率则开始异于烂果和霉变果,在800nm以后,红果的光谱反射率值则小于烂果和霉变果的光谱反射率值。烂果和霉变果在400-1000nm范围内,其光谱曲线变化趋势一致,唯一不同的一点可能就在于烂果在720nm处反射率曲线陡然上升,而霉变果则在680nm处就已经陡然上升。总体上,烂果和霉变果曲线上升的斜率均大于红果上升的斜率。图3右侧为利用400-1000nm光谱范围对烂果、霉变果、红果的分类研究,上半部分为烂果、中间部分为霉变果、下半部分为红果。由于红果中也有少量的霉变果,而霉变果中肯定也不是全部整个果子都发生霉变,同理烂果中也可能存在霉变果等,因此分类结果只能大致的告知哪些是烂果、霉变果和红果。
图 3 烂果、霉变果以及红果在400-1000nm的光谱及分类
2.2 短波红外技术分析黑枸杞品种
图4为黑枸杞烂果、霉变果和红果在短波红外1000-2500nm波长范围内的光谱反射率曲线,从其反射率曲线来看,在1000-1250nm范围内,红果的光谱反射率低于烂果和霉变果的光谱反射率,在1120nm处。烂果和霉变果有明显的峰谷,而红果的峰谷不明显;但在1250-2500nm范围内,红果的光谱反射率则高于烂果和霉变果的光谱反射率,然而在1250-2500nm范围内,红果与烂果、霉变果的光谱曲线变化趋势则非常相似。在短波红外1000-2500nm范围内,烂果和霉变果的光谱反射曲线也十分相似,在1000-1400nm和1600-2500nm范围内,烂果的光谱反射率值高于霉变果的反射率值;在1400-1600nm和范围内,烂果的光谱反射率值则低于霉变果的反射率值。图4右侧为利用1000-2500nm光谱范围对烂果、霉变果、红果的分类研究,上半部分为烂果、中间部分为霉变果、下半部分为红果。从分类结果来看,霉变果有一部分被分为了烂果,而红果中由于本身存在霉变果,所以部分被分为霉变果或者烂果属于正常现象。霉变果中由于不可能全部或者整个果子都发生霉变,所示在分类的过程中,有部分没发生霉变的被分为红果属于正确分类。
图4 烂果、霉变果以及红果在1000-2500nm的光谱及分类
相关产品
-
高光谱的主要技术路线
高光谱成像技术,作为一种能够获取物体在数百甚至数千个连续波长范围内的光谱信息的成像技术,其成像方式与传统的二维成像技术有着显著的区别。由于高光谱成像提供的是三..
-
光谱与光谱分析方法的类型
光谱,作为物质内在特性的外在表现,如同每种物质的独特“指纹”,承载着丰富的信息。不同物体因其元素组成、结构差异以及状态变化,会反射或散射出特定波长的光,形成独一..
-
什么是光谱?
光谱,这一术语源自光学领域,是描述光按照不同波长或频率分布的一种图案或序列。为了深入理解光谱的概念,让我们从牛顿的色散实验谈起,这一经典实验不仅揭示了光的本质,..
-
多光谱与高光谱的区别
在当今的光谱成像技术领域,多光谱和高光谱技术都是重要的组成部分,它们在多个领域发挥着不可或缺的作用。然而,这两种技术之间存在着显著的区别,了解这些区别对于选择和..